Germain, G., Main, P. \& Woolfson, M. M. (1970). Acta Cryst. B26, 274-285.
Germain, G. \& Woolfson, M. M. (1968). Acta Cry'st. B24, 91-96.
International Tables for X-ray Crystallography (1974). Tome IV, pp. 71-78. Birmingham: Kynoch Press.

Jaulmes. S. \& Julien-Pouzol, M. (1977). Acta Cryst. B33, 1191-1193.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Nilzeki, N. \& Buerger, M. J. (1957). Z. Kristallogr. 109, 161-183.

Structure of
 Pyridinium catena- μ-Chloro-chloro(3,4,5,6-tetrachloropyrocatecholato)antimonate(III)

By M. Alamgir, N. Allen, P. W. C. Barnard, J. D. Donaldson and J. Silver
Department of Chemistry, Chelsea College, Manresa Road, London SW3 6LX, England

(Received 28 May 1980; accepted 7 January 1981)

Abstract

C}_{5} \mathrm{H}_{6} \mathrm{~N}\right]^{+}\left[\mathrm{Sb}\left(\mathrm{C}_{6} \mathrm{Cl}_{4} \mathrm{O}_{2}\right) \mathrm{Cl}_{2}\right]^{-}, M_{r}=518 \cdot 6\), monoclinic, $a=14.051$ (9), $b=8.494$ (6), $c=$ 16.508 (11) $\AA, \beta=98.21(5)^{\circ}, V=1950.02 \AA^{3}, D_{c}=$ 1.77 for $Z=4, D_{m}=1.75 \mathrm{Mg} \mathrm{m}^{-3}$ (displacement of chlorobenzene), $F(000)=992$; systematic absences $h 0 l$ for $l=2 n$, space group $P 2_{1} / c . R=0.081$ for 1882 reflections. The Sb atoms have three short bonds: $\mathrm{Sb}-\mathrm{O} 2.051$ (11) and 2.065 (17) \AA; and $\mathrm{Sb}-\mathrm{Cl}$ 2.469 (9) \AA. Five-coordination is completed by two bridging $\quad \mathrm{Sb}-\mathrm{Cl}$ contacts $[2.873(10)$ and 3.001 (9) \AA]. The pyridinium ion is hydrogen bonded to one of the O atoms of the pyrocatechol groups.

Introduction. There are few reports on the determination of the crystal structures of pyrocatechol derivatives of main-group elements. In particular, the structure of only one $\mathrm{Sb}^{\text {III }}$ derivative, antimony pyrogallate, is known (Aurivillius \& Särnstrand, 1976). We now report the structure of the title compound.

Tetrachloropyrocatechol (0.01 mol) in 25 ml of dry methanol was added to $\mathrm{SbCl}_{3}(0.01 \mathrm{~mol})$ in 25 ml of dry methanol and the mixture refluxed for 2 h under nitrogen. Pyridine $(0.01 \mathrm{~mol})$ was added slowly to the cooled reaction mixture. The precipitate was filtered, washed with dry methanol followed by petroleum ether and then dried. The product was recrystallized from acetonitrile to give crystals which melted at 482-483 K. Analysis gave $\mathrm{Sb} 22 \cdot 6, \mathrm{Cl} 38 \cdot 9 \%$. Values required for $\left[\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}\right]+\left[\mathrm{Sb}\left(\mathrm{C}_{6} \mathrm{Cl}_{4} \mathrm{O}_{2}\right) \mathrm{Cl}_{2}\right]^{-}$are $\mathrm{Sb} 22 \cdot 7, \mathrm{Cl} 39 \cdot 1 \%$.

Single-crystal rotation and Weissenberg photographs of a crystal mounted along \mathbf{b} were obtained and the cell dimensions deduced from them. These values were then used as the basis for a least-squares refinement of measurements from a Debye-Scherrer powder photograph.

Intensities were collected from a crystal (mean diameter 0.30 mm) mounted along \mathbf{b} on a Nonius equi-inclination integrating Weissenberg camera with Zr -filtered Mo $K \alpha$ radiation $(\lambda=0.7107 \AA$). The 1882 reflections which were collected for layers 0 to 6 were measured on a Nonius Mk II microdensitometer. No absorption corrections were made ($\mu R=0.381$).

The positions of the Sb atoms were determined from a Patterson synthesis and refined by full-matrix least squares before those of the Cl atoms were obtained from a Fourier synthesis. The positions of the O atoms and finally of the C and N atoms were obtained from Fourier and difference syntheses phased on the Sb and Cl positions.

Full-matrix least-squares refinement of layer scale factors, atomic positions, anisotropic temperature factors for Sb and Cl and isotropic temperature factors for O, C and N converged with $R=\sum\left|F_{0}\right|-$ $\left|F_{c}\right| / \sum\left|F_{o}\right|=0.081$ with unit weights. Scattering factors for neutral $\mathrm{Sb}, \mathrm{Cl}, \mathrm{O}, \mathrm{C}$ and N were taken from International Tables for X-ray Crystallography (1962).

The final atomic coordinates are given in Table 1 , bond distances and angles in Table 2.*
The computer programs used were $N U C L S 4$ (J. A. Ibers \& R. J. Doedens), FORDAP (A. Zalkin; personal communication, D. Bright), ORFFE (Busing, Martin \& Levy, 1964), and CELLPLOT (Puxley \& Donaldson, 1973).

Discussion. The structure consists of chains of [Sb$\left(\mathrm{C}_{6} \mathrm{Cl}_{4} \mathrm{O}_{2}\right) \mathrm{Cl}_{2}$] units linked by bridging Cl atoms. The

[^0]chains are anionic and the charge is balanced by discrete pyridinium cations. The arrangement of two of the four fomula units in the cell is shown in Fig. 1.
The environment of the $\mathrm{Sb}^{\mathrm{III}}$ atom (Fig. 2) consists of two short $\mathrm{Sb}-\mathrm{O}$ bonds (2.051 and $2.065 \AA$), one short $\mathrm{Sb}-\mathrm{Cl}$ bond $(2.469 \AA$) and two longer $\mathrm{Sb}-\mathrm{Cl}$ distances (2.873 and $3.001 \AA$) to bridging Cl atoms.

Table 1. Final atomic parameters with e.s.d.'s in parentheses

	x	y	z	$B_{\text {eq }} / B\left(\AA^{2}\right)^{*}$
Sb	0.0950 (1)	0.0754 (2)	$0 \cdot 1701$ (1)	$3 \cdot 11$
$\mathrm{Cl}(1)$	-0.0071 (6)	0.3078 (12)	0.2642 (4)	5.68
$\mathrm{Cl}(2)$	$0 \cdot 1999$ (5)	$0 \cdot 2817$ (11)	$0 \cdot 1254$ (4)	$5 \cdot 24$
$\mathrm{Cl}(3)$	0.3522 (5)	-0.3026 (11)	$0 \cdot 1108$ (4)	5.09
$\mathrm{Cl}(4)$	$0 \cdot 5143$ (5)	-0.3380 (12)	$0 \cdot 2615$ (5)	5.73
$\mathrm{Cl}(5)$	0.4923 (4)	$-0.1702(11)$	0.4250 (4)	$5 \cdot 17$
$\mathrm{Cl}(6)$	$0 \cdot 3107$ (4)	0.0382 (10)	0.4369 (3)	4.03
O(1)	0.1821 (9)	0.0638 (21)	0.2808 (7)	$2 \cdot 67$ (2)
$\mathrm{O}(2)$	0.1939 (9)	-0.0896 (23)	0.1436 (8)	$3 \cdot 18$ (3)
C(1)	0.2543 (13)	-0.0251 (30)	0.2800 (10)	2.41 (3)
C(2)	0.2641 (13)	-0.1139 (31)	0.2062 (11)	2.67 (4)
C(3)	0.3430 (14)	-0.2102 (33)	$0 \cdot 2003$ (12)	3.04 (4)
C(4)	0.4146 (15)	-0.2284 (35)	$0 \cdot 2698$ (13)	$3 \cdot 55$ (4)
C(5)	0.4044 (14)	-0.1472 (31)	0.3425 (11)	2.88 (4)
C(6)	0.3256 (13)	-0.0521 (33)	0.3457 (11)	2.84 (4)
C(7)	0.3757 (30)	0.0913 (72)	-0.1109 (26)	9.88 (11.1)
C(8)	0.3066 (28)	0.0906 (64)	-0.1838 (23)	8.41 (9)
C(9)	0.2195 (31)	0.0319 (70)	-0.1807 (25)	9.70 (11.4)
C(10)	$0 \cdot 1905$ (25)	0.0219 (59)	-0.0971 (22)	7.94 (9)
C(11)	0.3447 (35)	0.0278 (81)	-0.0274 (28)	$10 \cdot 86$ (13.1)
N	0.2533 (24)	0.0046 (50)	-0.0269 (18)	$6 \cdot 55$ (7)

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$, with e.s.d.'s in parentheses

$\mathrm{Sb}-\mathrm{Cl}(1) \quad 3.00$	3.001 (9)	$\mathrm{C}(6)-\mathrm{C}(1) \quad 1.39$	
$\mathrm{Sb}-\mathrm{Cl}\left(1^{\prime}\right) \quad 2.8$	2.873 (10)	$\mathrm{C}(3)-\mathrm{Cl}(3) \quad 1.694$	(23)
$\mathrm{Sb}-\mathrm{Cl}(2) \quad 2.4$	2.469 (9)	$\mathrm{C}(4)-\mathrm{Cl}(4) \quad 1.70$	(26)
$\mathrm{Sb}-\mathrm{O}(1) \quad 2.0$	2.051 (11)	$\mathrm{C}(5)-\mathrm{Cl}(5) \quad 1.71$	(19)
$\mathrm{Sb}-\mathrm{O}(2) \quad 2.06$	2.065 (17)	$\mathrm{C}(6)-\mathrm{Cl}(6) \quad 1.72$	(22)
$\mathrm{C}(1)-\mathrm{O}(1) \quad 1.26$	1.267 (26)		
$\mathrm{C}(2)-\mathrm{O}(2) \quad 1.3$	1.338 (21)	$\mathrm{C}(7)-\mathrm{C}(8) \quad 1.4$	
$\mathrm{C}(1)-\mathrm{C}(2) \quad 1.4$	1.46 (3)	$\mathrm{C}(8)-\mathrm{C}(9) \quad 1.33$	
$\mathrm{C}(2)-\mathrm{C}(3) \quad 1.3$	1.39 (3)	$\mathrm{C}(9)-\mathrm{C}(10) \quad 1.50$	
C(3)-C(4) 1.4	1.42 (3)	$\mathrm{C}(10)-\mathrm{N} \quad 1.36$	
C(4)-C(5) 1.4	1.41 (3)	$\mathrm{N}-\mathrm{C}(11) \quad 1.30$	
$\mathrm{C}(5)-\mathrm{C}(6) \quad 1.3$	1.38 (3)	$\mathrm{C}(11)-\mathrm{C}(7) \quad 1.60$	
$\mathrm{Cl}(1)-\mathrm{Sb}-\mathrm{O}(1)$) 80.8 (5)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	119.1 (2.0)
$\mathrm{Cl}\left(1^{\prime}\right)-\mathrm{Sb}-\mathrm{O}(1)$	() 81.9 (5)	$\mathrm{Cl}(4)-\mathrm{C}(4)-\mathrm{C}(3)$	119.3 (1.8)
$\mathrm{Cl}(2)-\mathrm{Sb}-\mathrm{O}$ (2)	(2) 88.3(5)	$\mathrm{Cl}(4)-\mathrm{C}(4)-\mathrm{C}(5)$	121.4 (1.5)
$\mathrm{O}(1)-\mathrm{Sb}-\mathrm{O}$ (2)	79.7 (6)	C(3)-C(4)-C(5)	119.2 (2.1)
$\mathrm{Cl}(1)-\mathrm{Sb}-\mathrm{Cl}\left(1^{\prime}\right)$	(1) $\quad 93.6$ (3)	$\mathrm{Cl}(5)-\mathrm{C}(5)-\mathrm{C}(4)$	118.1 (1.7)
$\mathrm{Cl}(1)-\mathrm{Sb}-\mathrm{Cl}(2)$	(2) 92.1 (3)	$\mathrm{Cl}(5)-\mathrm{C}(5)-\mathrm{C}(6)$	$121.9(1.6)$
$\mathrm{Sb}-\mathrm{O}(1)-\mathrm{C}(1)$	113.4 (11)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$120.0(1.7)$
$\mathrm{Sb}-\mathrm{O}(2)-\mathrm{C}(2)$	112.7 (1.3)	$\mathrm{Cl}(6)-\mathrm{C}(6)-\mathrm{C}(1)$	116.3 (1.7)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	(2) $119.3(1.5)$	$\mathrm{Cl}(6)-\mathrm{C}(6)-\mathrm{C}(5)$	119.5 (1.3)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	(6) 125.5 (1.8)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	124.2 (1.9)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	(6) $115.1(1.9)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(11)$	119.2 (3.8)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	(1) $114.7(1.8)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	119.1 (4.0)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	(3) $122.9(1.8)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	115.5 (3.6)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	(3) 122.3 (1.6)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}$	124.3 (3.3)
$\mathrm{Cl}(3)-\mathrm{C}(3)-\mathrm{O}(2)$	(2) 119.6 (1.4)	$\mathrm{C}(10)-\mathrm{N}-\mathrm{C}(11)$	120.0 (3.6)
$\mathrm{Cl}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	(4) $121.3(1.8)$	$\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{N}$	116.6 (3.6)

This gives a trigonal-bipyramidal arrangement of short nearest-neighbour bonds around Sb with the two longer $\mathrm{Sb}-\mathrm{Cl}$ distances completing a distorted fivecoordinated environment in which a sterically active lone pair completes a distorted octahedral distribution of electron pairs. It is possible to pick out from the Sb environment a trigonal-bipyramidal distribution of nearest-neighbour atoms similar to those found in cubic (Svensson, 1975) and orthorhombic (Svensson, 1974) $\mathrm{Sb}_{2} \mathrm{O}_{3}$ or in SbCl_{3} (Lindqvist \& Niggli, 1956). The bond lengths are greater than the corresponding ones in cubic $\mathrm{Sb}_{2} \mathrm{O}_{3}\left(1.977 \AA\right.$), orthorhombic $\mathrm{Sb}_{2} \mathrm{O}_{3}$ (1.98, $2.02,2.02 \AA$) and $\mathrm{SbCl}_{3}(2.36 \AA)$. The lengthening of the $\mathrm{Sb}-\mathrm{O}$ and $\mathrm{Sb}-\mathrm{Cl}$ bonds in the tetrachloropyrocatechol complex is clearly associated with an increase in the coordination of the Sb by the two bridging Cl atoms. Such lengthening of bonds (Table 3) is a common feature in both $\mathrm{Sb}-\mathrm{O}$ and $\mathrm{Sb}-\mathrm{Cl}$ compounds in which the Sb coordination is greater than three. Similar effects have been noted in the structural chemistry of $\mathrm{Sn}^{\mathrm{II}}$, which is isoelectronic with $\mathrm{Sb}^{\text {III }}$. $\mathrm{In} \mathrm{Sn}^{11}$ an increase in the metal coordination from the usual trigonal-bipyramidal environment only occurs if at least one of the three short bonds is lengthened (Dewan, Silver, Andrews, Donaldson \& Laughlin, 1977; Donaldson, Donoghue \& Smith, 1976). In Sn^{11} structures this often leads to four-coordinated environ-

Fig. 1. Structure of the title compound.

Fig. 2. The environment of the Sb atoms.

Table 3. Compounds containing $\mathrm{Sb}-\mathrm{O}$ bonds

Compound	Bond distances (\AA)	Bond angles ${ }^{\circ}$)
$\mathrm{Sb}_{2} \mathrm{O}_{3}$ (cubic)	1.977	95.6, 95.9
$\mathrm{Sb}_{2} \mathrm{O}_{3}$ (orthorhombic)	1.98, 2.02, 2.02	79.8
$\mathrm{Sb}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}$	2.022, 2.23	$\begin{aligned} & 78 \cdot 0,82 \cdot 7 \text {, } \\ & 92 \cdot 9 \end{aligned}$
$\mathrm{Fe}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2} \mathrm{Sb}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1-94, 2.11, 2.16	$\begin{aligned} & 79 \cdot 7,82 \cdot 7, \\ & 84 \cdot 8,100 \cdot 3 \end{aligned}$
$\mathrm{K}_{2}\left[\mathrm{Sb}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{6}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (racemic)		
[Sb(1)]	$\begin{aligned} & 2.05,2.06,2.25, \\ & 2.17 \end{aligned}$	$\begin{aligned} & 77 \cdot 0,77 \cdot 5, \\ & 78 \cdot 9,82 \cdot 0 \end{aligned}$
[Sb(2)]	$\begin{aligned} & 1 \cdot 91,2 \cdot 01,2 \cdot 16 \\ & 2 \cdot 22 \end{aligned}$	$\begin{aligned} & 78 \cdot 5,79 \cdot 7, \\ & 80 \cdot 5,85 \cdot 6 \end{aligned}$
$\begin{aligned} & \mathrm{K}_{2}\left[\mathrm{Sb}_{2}\left\{(+)-\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{6}\right\}_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O} \\ & {[\mathrm{Sb}(1)]} \end{aligned}$	$\begin{aligned} & 1 \cdot 97,2 \cdot 00,2 \cdot 13, \\ & 2 \cdot 18 \end{aligned}$	$\begin{aligned} & 77 \cdot 8,78 \cdot 6 \\ & 101 \cdot 4,147 \cdot 7 \end{aligned}$
[Sb(2)]	$\begin{aligned} & 1 \cdot 99,2 \cdot 01,2 \cdot 12, \\ & 2 \cdot 21 \end{aligned}$	$\begin{aligned} & 77 \cdot 2,79 \cdot 5 \\ & 101 \cdot 1,148 \cdot 8 \end{aligned}$
SbNbO_{4}	$\begin{aligned} & 2 \cdot 008,2 \cdot 038, \\ & 2 \cdot 134,2 \cdot 331 \end{aligned}$	$92 \cdot 1,150 \cdot 7$
$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{Sb}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 2 \cdot 06,2 \cdot 16 \text { (axial) } \\ & 2 \cdot 26,2 \cdot 32 \text { (equatorial) } \end{aligned}$	70-72
$\left[\mathrm{Sb}\left(\mathrm{C}_{6} \mathrm{Cl}_{4} \mathrm{O}_{2}\right) \mathrm{Cl}_{2}\right]^{-}\left[\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}\right]^{+}$	2.051, 2.065	79.7

ments with two short and two longer bonds. This type of coordination is also found in many $\mathrm{Sb}^{\mathrm{III}}$ compounds such as $\mathrm{Sb}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ (Aurivillius \& Särnstrand, 1976), $\quad \mathrm{Fe}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{6} \mathrm{Sb}\right)_{2} .8 \mathrm{H}_{2} \mathrm{O} \quad$ (Zalkin, Templeton \& Ueki, 1973), $\quad \mathrm{K}_{2}\left[\mathrm{Sb}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{6}\right)_{2}\right]$ (Kamenar, Grdenić \& Prout, 1970; Gress \& Jacobson, 1974), $\mathrm{SbNbO}_{4} \quad$ (Skapski \& Rogers, 1965), $\mathrm{SbCl}_{3} \cdot \mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ (Hulme \& Scruton, 1968) and $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH} . \mathrm{SbCl}_{4}$ (Porter \& Jacobson, 1970). In $\mathrm{Sb}^{\text {III }}$ chloride complexes such as $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SbCl}_{5}$ (Webster \& Keats, 1971) and $\mathrm{K}_{2} \mathrm{SbCl}_{5}$ (Wismer \& Jacobson, 1974), in which the coordination of the Sb is raised to five, only $\mathrm{Sb}-\mathrm{Cl}$ bonds of length comparable with the short bonds in SbCl_{3} remain. Similar lengthening of the $\mathrm{Sb}-\mathrm{O}$ bond is found in the five-coordinate environment of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{Sb}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Poore \& Russell, 1971). The $\mathrm{Sb}-\mathrm{O}$ bonds in the title compound fall within the range of the short $\mathrm{Sb}-\mathrm{O}$ bonds found in the compounds with coordination greater than three, viz.
$1.91-2.07 \AA$, but the short $\mathrm{Sb}-\mathrm{Cl}$ bond is significantly longer than the shortest $\mathrm{Sb}-\mathrm{Cl}$ bonds (2.32$2.38 \AA$). This suggests that it is the $\mathrm{Sb}-\mathrm{Cl}$ rather than the $\mathrm{Sb}-\mathrm{O}$ bond that is weakened because of the formation of the bridging Cl bonds.

References

Aurivillius, B. \& Särnstrand, C. (1976). Acta Chem. Scand. 30, 232-234.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). ORFFE. Report ORNL-TM-306. Oak Ridge National Laboratory, Tennessee.
Dewan, J. C., Silver, J., Andrews, R. H., Donaldson, J. D. \& Laughlin, D. R. (1977). J. Chem. Soc. Dalton Trans. pp. 368-371.
Donaldson, J. D., Donoghue, M. T. \& Smith, C. H. (1976). Acta Cryst. B32, 2098-2101.

Gress, M. E. \& Jacobson, R. A. (1974). Inorg. Chim. Acta, 8, 209-217.
Hulme, R. \& Scruton, J. C. (1968). J. Chem. Soc. pp. 2448-2452.
International Tables for X-ray Crystallography (1962). Vol. III, pp. 201-212. Birmingham: Kynoch Press.
Kamenar, B., Grdenić, D. \& Prout, C. K. (1970). Acta Cryst. B26, 181-188.
LindQvist, I. \& Niggli, A. (1956). J. Inorg. Nucl. Chem. 2, 345-347.
Poore, M. C. \& Russell, D. R. (1971). Chem. Commun. pp. 18-19.
Porter, S. K. \& Jacobson, R. A. (1970). J. Chem. Soc. A, pp. 1356-1359.
Puxley, D. C. \& Donaldson, J. D. (1973). Acta Cryst. A29, 91-93.
Skapski, A. C. \& Rogers, D. (1965). Chem. Commun. pp. 611-613.
Svensson, C. (1974). Acta Cryst. B30, 458-461.
Svensson, C. (1975). Acta Cryst. B31, 2016-2018.
Webster, M. \& Keats, S. (1971). J. Chem. Soc. A, pp. 298-299.
Wismer, R. A. \& Jacobson, R. A. (1974). Inorg. Chem. 13, 1678-1680.
Zalkin, A., Templeton, D. H. \& Ueki, T. (1973). Inorg. Chem. 12, 1641-1646.

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35614 (19 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

